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Abstract—It is challenging to provide accurate attitude
estimation for a quadrotor during aggressive maneuvers, which
involve violent and fast motion with uncertainty on sensors. In
this unique case, we propose a fast adaptive Complementary
Filter, which fuses raw measurements from a MARG sensor
system and could cope with the large range of quadrotor
manuvers. The performance of the filter is validated on an
actual quadrotor platform, by comparing with the Extended
Kalman Filter (EKF) and the Error State Kalman Filter
(ESKF) simultaneously. The experimental results show that the
proposed CF has better estimate accuracy, low time-latency and
stable orientation outputs in a quadrotor’s attitude estimate.

I. INTRODUCTION

Aggressive maneuvers of Unmanned Aerial Vehicles
(UAVs) are dominantly triggered by large-scale attitude
changes or fast moves. Unlike smooth flights of UAVs
in open environments, the aggressive maneuvers have the
advantage of coping with flying through complex and con-
strained scenarios. Thus, applications for UAVs could be ex-
tended to agile obstacle avoidance, narrow-space exploration
and inspection, or human-rescue under emergent situations.

With extensive efforts on state estimation, motion control
and trajectory planning, an aerial robot is capable of ad-
dressing extreme flight conditions. [1] conducted aggressive
flights with a quadrotor, which could be maintaining in a
well-predicted state. The authors address the stabilization
problem of hovering after a flip maneuver in [2]. Without
a motion capture system, [3] proposes a quadrotor only
equipped with a single camera and IMU for aggressive
flights. The previous works [4]–[7] focus on motion-related
solution, instead of the basic perspective: attitude estimation
when a quadrotor engages in aggressive maneuvers. It is
essential to accurately estimate the attitude for a quadrotor,
during any moment of a flight. Generally, MARG sensors
composed of a 3-axis MEMS gyroscope, an accelerometer
and a magnetometer are considerably implemented on light-
weight UAVs.

Categorized into two main sorts: Complementary Filter
[8]–[10] and Kalman Filter [11]–[13], sensor fusion methods
are widely considered to achieve a reliable solution. The
fundamental principle of the CF is that the gyroscope and the
accelerometer with the magnetometer compensate mutually,
under different frequency domains. An issue of the CF is that
it requires a proper filter gain to realize better performance
of the attitude estimation. Among nonlinear filters, the the
Extended Kalman Filter (EKF) is the most widely used.
It uses Taylor-series expansion to linearize the nonlinear
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Fig. 1. The proposed quadrotor is flying through a narrow tunnel. (a) The
aggressive and fast flight of the quadrotor. (b) An experimental box with a
narrow tunnel. (c) Our quadrotor platform.

model, and then utilizes Kalman Filter for attitude estimation
[14]. Unlike direct operation of the EKF, the Error State
Kalman Filter (ESKF) [15] derives optimal attitude error
which is based on measurements of sensors, to update
current attitude with Kalman Filter.

The above sensor fusion approaches are mostly well-
performed and extensively implemented in many quadro-
tor platforms. However, iterative algorithms (KF) including
matrix operation, take up much computation consumption.
Also, their attitude estimation under circumstances of con-
siderable self-acceleration and external magnetic distortion
is not always reliable. The main contributions of this paper
are listed as follows:

1) Aimed at accurate attitude estimate under large vibra-
tions of the sensor body frame, we plan consecutive
aggressive maneuvers (in Fig. 1) for a light-weight
quadrotor to execute, under a motion capture system
VICON.

2) Meanwhile, we propose a fast adaptive Complementary
Filter for attitude estimation of the quadrotor, and it
introduces a CF gain which is adaptively associated
with sensors’ outputs.

3) We compare the proposed CF with EKF and ESKF
simultaneously, where results show that the CF has
better estimate accuracy, low time-latency and stable
estimate outputs.

The structure is arranged as following: Section II gives the
brief system modeling for a quadrotor. Section III involves
the details of the proposed fast adaptive CF. Section IV
contains the experimental setup and results. Concluding
insights are given in Section V.
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II. SYSTEM MODELING

In this section, we discuss sensor measurement models,
UAV attitude representation system and dynamics of quadro-
tor maneuvers, which are basic for derivation of the proposed
filter.

A. MARG Sensor Error Model

During aggressive flights, it is fundamental to ensure
that the measurement data inputted into the sensor-fusion
process, has high reliability. For a quadrotor, its MARG
sensors provide raw measurements of the body frame with
acceleration, magnetic field and angular velocity. The angu-
lar velocity obtained by the gyroscope, is modeled as:

ωm = ω̃r + bg + µg (1)

where ωm is the measured angular velocity and ω̃r is the
real angular velocity. bg and ng are the random measurement
bias of the gyro, and zero-mean gaussian white noise.

Subsequently, acceleration and magnetic field measure-
ments are modeled by:

αm = RT (α̃r − g) + ba + µa

mm = RT (m̃r −m) + bm + µm
(2)

where αm, α̃r,mm and m̃r represent the measured acceler-
ation, ideal acceleration, measured magnetic field and ideal
magnetic field, respectively. Similar to gyroscope, ba and
bm denote the inherent sensor measurement bias of the ac-
celerometer and magnetometer, with gaussian white noises:
µa and µm. Here RT is the rotation matrix aligned with the
quadrotor body frame and the inertial frame. The North-East-
Down (NED) frame is established by g = [0 0 1]T and
m = [mN 0 mD]T , which are normalized gravitational
acceleration in the world frame and magnetic field in inertial
frame.

The accelerometer and magnetometer suffer from large-
scale vibrations, which leads to relatively low reliability
when the two sensors contribute to attitude estimation. In this
case, the gyroscope provides high-frequency of angular rate,
which compensate significantly. Therefore, to estimate gyro
bias is the vital part to make the angular rate measurement
accurate. On the other hand, during aggressive maneuvers,
it is necessary to define an available status for acceleration
and magnetic field to rectify error drift of the gyroscope.

B. Attitude Representation Model

Each quadrotor owns its rigid parameters and dynamic
model, which allows us to define a determined attitude
representation. Usually Euler angles: RPY are used to
describe an orientation of a quadrotor. Here we define the
quadrotor body frame as B, and the inertial frame as N .
The Direction Cosine Matrix (DCM) for the transformation
from N to B is denoted by RB

N , which is shown in Eq. (4)
in terms of the orientation quaternion.

Furthermore, a normalized quaternion is utilized to rep-
resent the quadrotor’s orientation during the sensor fusion
computation. The quaternion describing attitude of the body

frame relative to the world reference frame, could be defined
as:

Q = [qw qx qy qz]
T , ||Q||2 = 1 (3)

where qw is the scalar part and q = [qx qy qz]
T is the

rotation vector part of the quaternion. Additionally, the DCM
is built by quaternion components:

RB
N =

 C1 2(qxqy − qwqz) 2(qxqz + qwqy)
2(qxqy + qwqz) C2 2(qyqz − qwqx)
2(qxqz − qwqy) 2(qyqz + qwqx) C3


(4)

where



C1

C2

C3


 =




1− 2(q2y + q2z)
1− 2(q2x + q2z)
1− 2(q2x + q2y)


. Then, the related

Euler angles from the DCM terms are established by:


φ
θ
ψ


 =




arctan(2(qyqz + qwqx)/(1− 2(q2x + q2y)))
− arcsin(2(qxqz − qwqy))

arctan(2(qxqy + qwqz)/(1− 2(q2y + q2z)))


.

(5)
The attitude of a quadrotor in format of Euler angles will

be employed in performance validation of the proposed filter,
in aggressive maneuvers experiments.

C. Dynamic Model

To ensure the quadrotor maneuvers follow predefined
trajectories, we implemented the property of differential
flatness for the standard dynamic model:

ml̈ = mgzW − εzB
ω̇ = J−1[−ω× Jω+M ]

(6)

where differential flatness of the quadrotor model was ex-
plained in [3]. In Eq. (6), l is the position vector of the
quadrotor in the world reference frame, ω is the angular
velocity vector in the quadrotor body frame, and ε and M
are the net thrust and moments in the quadrotor body frame.
J and m are the inertia and mass of the quadrotor. zB is
the unit vector aligned with the axis of the four rotors and
indicates the direction of thrust, while zW is the unit vector
denoting the direction of gravity.

An arbitrary trajectory segment is composed of four
polynomial variables: a cartesian point x, y, z, and a heading
orientation: ψ (yaw angle), which form two transient states in
the world reference frame. The quadrotor flight controller is
employed to execute maneuver trajectories, with individual
outputs of thrust ε and moments M for four desired motor
speeds:

ε = (−kxex − kvev +mgzW +ml̈d) ·RzW

M = −kReR − kωeω + ω × Jω − J(ω̂RTRdωd −RTRdω̇d)
(7)

where ex, ev , eR, and eω are the error vectors of position,
velocity, orientation and angular rate. kx, kv , kR, and kω
are related control gains, and R is the rotation matrix
denoting the orientation of the quadrotor, relative to the
world reference frame. The subscript d indicates desired
values.
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III. DESIGNED FILTER

A. Orientation From Angular Velocity

A tri-axis gyroscope of the MARG system is used to
provide high-frequency angular rates related to the x, y and
z axes of the quadrotor’s body frame (B), referred as ωx,
ωy and ωz respectively. We use a 3-D vector to arrange the
gyro-parameters in Eq. (8). The derivative of a quaternion
indicates angular rate of change of the body frame relative to
the world reference frame (W ). In Eq. (9), the dot product
denotes the multiplication of a matrix and a vector, and the
superscriptˆdenotes a normalized unit.

Bω = [ωx ωy ωz]
T (8)

B
W q̇ = BΩ · BW q̂ (9)

BΩ =
1

2




0 ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0


. (10)

The orientation of the earth frame relative to the sensor
frame at time t, qω,t can be computed by numerically
integrating the quaternion derivative q̇ω,t as described by
Eq. (9), given that initial conditions are determined. In these
equations, Bωt is the angular rate vector measured at time
t, ∆t is the sampling period and qω,t−1 is the estimate
of orientation at the last sampling time. The subscript ω
indicates that the quaternion is calculated from angular rates.

At any time t, the orientation of the quadrotor body
frame under the world reference frame is denoted by B

Wqω,t,
with the derivative of quaternion B

W q̇ω,t. With known initial
condition of the quadrotor’s orientation, the relation between
B
Wqω,t and B

W q̇ω,t is established as:

B
W q̇ω,t = BΩt · BW q̂est,t−1

B
Wqω,t = B

W q̂est,t−1 +

∫
B
W q̇ω,t∆t

(11)

where BΩt as the orthogonal matrix of Bωt is denoted in
Eq. (10)

B. Orientation From Gravity And Magnetic Field

From the perspective of the gravity field (G), a derivation
of the auxiliary quaternion Gqα, is provided from accelera-
tion Bα and gravitation Gg. With observation of the gravity
vector in the world reference frame and the quadrotor body
frame, the quaternion which realizes rotation transformation
between two above frames is determined. Thus, the transfor-
mation between acceleration and gravitation could be built
as:

R(BGq)Gg = Ba (12)

An element of the gravity vector in the world reference
frame, is only related to the z-axis. Therefore, any rotation of

the body frame about the z-axis could not bring any change
to it. As a result, Eq. (12) is rewritten as:

R(qα)




0
0
1


 =




Bαx
Bαy
Bαz


. (13)

By expanding Eq. (13), the transformation is further estab-
lished as:


2(qα,x · qα,z + qα,w · qα,y)
2(qα,y · qα,z + qα,w · qα,x)
q2α,w − q2α,x − q2α,y + q2α,z


 =




Bαx
Bαy
Bαz


. (14)

However, the above system has infinite solutions, owing
to the representation without any rotation about the z-axis
(yaw). Hence, we implement definite roll and pitch angles
with undetermined yaw angle, which leads to restriction of
solutions. Then, qα,z = 0 is made to simplify the system Eq.
(14). For convenience, the solution with positive quaternion
scalar (qw) is employed to compute consequent quaternion
from the gravity field:

B
Wqα =

[
µ −

Bay
2µ

Bax
2µ

0

]T
, µ =

√
Baz + 1

2
(15)

Then, according to Eq. (5), we can compute the roll and
pitch angle of the quadrotor: φα and θα. The subscript α
indicates the Euler angles are derived from acceleration.

To calculate the undefined yaw angle: ψ, we imple-
ment magnetometer outputs: Bm = [Bmx

Bmy
Bmz]

T ,
when the quadrotor is during flights and its body frame is
not stationary. According to mB = CB

W |ψ=ψα,m,W
·mW ,

the transformation system could be extended to:
Bmx cos θα + Bmy sin θα sinφα + Bmz sin θα cosφα

= mN · cosψα,m,W

Bmy cosφα − Bmz sinφα = −mN · sinψα,m,W

(16)
where Bm = [mN 0 mD]T when the world reference
frame coincides with the quadrotor body frame. Conse-
quently, the heading angle ψα,m,W from both acceleration
and magnetic field is obtained:

ψα,m,W = (−1)·

arctan(
Bmy cosφα − Bmz sinφα

Bmx cos θα + Bmy sin θα sinφα + Bmz sin θα cosφα
)

(17)

C. Fusion Strategy

In practice, initial attitude estimation could be obtained by
the accelerometer and magnetometer, when the quadrotor is
stationary. Due to drift error of gyroscope and unreliable
measurement of the accelerometer during consecutive ag-
gressive maneuvers, it is unreasonable to separate them in
individual cases. The goal of the proposed fusion approach
is to estimate a correct orientation where B

Wqω,t is utilized
to reduce high-frequency errors in B

Wqest,t, and B
Wqα,m,t

is used to smooth integral drift errors of the gyroscope.

184

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on January 06,2024 at 09:13:08 UTC from IEEE Xplore.  Restrictions apply. 



The mutual compensation in frequency domain ensures
convergence of attitude estimate from initial conditions.

However, aggressive flights introduce more violence and
intervention to the quadrotor MARG sensor system, with
higher dynamic properties and wider orientation changes. It
leads to limited range of estimation outputs from a conven-
tional static Complementary Filter (CF) gain, established as:

B
Wqest,t = λ̂BWqα,m,t + (1− λ̂)BWqω,t, 0 ≤ λ̂ ≤ 1 (18)

Hence, we introduce an adaptive CF gain to enhance the
fusion performance, for addressing the filter dynamic insuf-
ficiency.

In terms of MARG sensors, angular rates ω describe the
extent of aggressive flights. When ω tends to be zero, the
estimate from accelerometer and magnetometer owns high
credibility. In this case, λ̂ in Eq. (18) is supposed to be low,
to ensure B

Wqα,m,t takes up more proportion in orientation
estimate. In the other hand, the quadrotor with high angular
rates relies on B

Wqω,t. Therefore, we establish a relation
between B

Wqω,t and B
Wqα,m,t to optimize out an appropriate

λ̂, for determining respective filter gain weight.
We focus on heading angles from both B

Wqω,t and
B
Wqα,m,t. In any sampling time period ∆t of a flight, the
integral of ωz could be regarded as reference of the yaw
angle: ψω,i, and ψα,m,i is taken as the divergent yaw angle.
Then, to minimize the deviation, an adaptive filter gain γ̂t
at the time stamp t is built as:

Ĝt = argmin
γ̂t

n∑

i

(ψω,i − ψα,m,i)
2 (19)

where n denotes nearest sampling time periods. γ̂t changing
with time, is firmly binding with attitude estimate from
MARG sensors, and it is affected by realtime dynamic status
of the quadrotor. Therefore, we replace the λ̂ in equa. (18)
as γ̂t to form the final proposed CF. The overview structure
of the fusion strategy is shown as Fig. 2.

Gyroscope Magnetometer Accelerometer

1
2
B
W q̂est,t−1 ⊗ Bωt

∫
.dt

qt
||qt||

argmin
γ̂t

n∑
i

(ψω,i − ψα,m,i)
2

γ̂t

z−1

Bαt
Bmt

Bωt

B
W q̇est,t

mB = CB
M |ψ=ψM

·mM R
(
B
Wqα

)
Wg = Bα

ψω

ψα,m 1− γ̂t

B
W q̂est,t

Fig. 2. Block diagram representation of the proposed adaptive Comple-
mentary Filter.

IV. RESULTS

We use an indoor UAV flight-experiment field, which
includes a motion capture system: VICON with 14-cameras.
The VICON provides high accuracy of pose measurement

for a rigid object, which is taken as ground-truth in algorithm
validation. In experiments, we design three sorts of maneu-
vers: two-point loop maneuver, two-triangle loop maneuver
and fixed-point rotation maneuver. To validate performance
of the proposed CF, a light-weight quadrotor is implemented
to execute aggressive maneuvers. During the maneuvers,
we compare currently popular sensor fusion algorithms
for attitude estimation: EKF (Extended Kalman Filter) and
ESKF (Error State Kalman Filter) with the designed filter, in
estimation of attitude Euler angles and runtime of a single
algorithm epoch. Their stability of realtime estimate outputs
is also considered.

A. Experimental Setup

The quadrotor platform uses QAV250 mechanism struc-
ture with limited weight and size. A Pixracer R15 flight
controller is employed to manage sensor driven and fusion,
attitude and position control, and communication with on-
board PC. The PC, Up-board installed with Linux operating
system including ROS [16], which is responsible for receiv-
ing pose information from VICON, and processing flight
planning commands. The overview of the quadrotor system
architecture is shown in Fig. 3.

B. Filter Performance Validation

In flight experiments, each of the designed aggressive
maneuvers lasts 90 to 120 seconds, and is conducted more
than 15 times. During any maneuver, the proposed filter with
EKF and ESKF for comparison is performed simultaneously.
Meanwhile, the orientation results of three tested filters and
VICON, in format of quaternion are recorded. To ensure the
uniformity of data structure, we record all the raw MARG
sensors data in rosbags and build an individual data process
node in ROS. By collecting filter outputs in this node, we
align them in the same time stamp, which is necessary
for realtime comparison and subsequent calculation. Based
on the aligned comparison, we use the root mean squared
error (RMSE) to evaluate estimate accuracy, and utilize
the runtime of every algorithm epoch to evaluate estimate
efficiency. The experiment of realtime aggressive maneuvers,
including flight path depicting and quadrotor orientation
output, is shown in the attached video.

1) Two-point loop maneuver: We randomly preplan two
cartesian points in the world reference frame. The quadrotor
is commanded to move from one point to the other one,
with initial large inclination angles. The loop motion is
consecutive. Fig. 4 extracts the period of two-point loop
motion, from 30s to 60s. It could be seen that, the largest
rotation Euler angle: Roll is more than 50o.

2) Two-triangle loop maneuver: The aim is to test filters’
performance, when both pitch and roll angles of quadrotor’s
attitude are violently changing. We set five cartesian points,
which form two triangles. The quadrotor moves in a fixed
direction, following the five points. Also, Fig. 5 shows 30s of
the two-triangle loop flight. The flight covers large variety
of both pitch and roll angles, which leads to more flight
attitudes of the quadrotor.

185

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on January 06,2024 at 09:13:08 UTC from IEEE Xplore.  Restrictions apply. 



Sensors

Quadrotor Platform

Linux-ROS

Remote User

Interface

MARG
 ,!,"

VICON

400 !

Pixracer

Flight

Planner

Attitude Estimation

AGSTF

ESKF

Attitude

Controller

Position

Controller

250 !

"#

"$

50 !

%$ 50 !

%&'

250 !

%#,  !

200"#

$%&'&(

)*+,

)-

),. ),+.

/134%

560"#

EKF

Fig. 3. Overview of the quadrotor system setup. Sensors block includes MARG sensors which provide acceleration, magnetic fields and angular rates.
Attitude estimation block covers the proposed filter with two compared filters: EKF and ESKF. Pixracer block executes flight control, with receiving
planning command from Linux-ROS block.

Fig. 4. Orientation comparison results of the two-point loop flight. The
orientation is in format of Euler angles: RPY.

Fig. 5. Orientation comparison results of the two-triangle loop flight.

3) Fixed-point rotation maneuver: During the flight, we
manipulate the extent of aggressive rotation by setting the
yaw angular rate. The goal of this designed maneuver is
to test the performance of yaw angle estimate, in aggressive
self-rotation. In Fig. 6, ESKF outputs in pitch and roll angles,
perform apparent oscillation, while the proposed filter and
EKF have good estimate.

According to estimation results of Euler angles, we com-
pute RMSE of each performed filter in each maneuver. The
RMSE results including Euler angles: RPY show as Table.
I. It can be investigated that the proposed filter perform

Fig. 6. Orientation comparison results of the fixed-point rotation flight.

the best during maneuvers with large change in pitch and
roll angles. Meanwhile, the proposed filter and EKF have
better performance in aggressive rotation flights. As for
filter estimate efficiency, we record 500 consecutive and
simultaneous epochs of the above algorithms.

TABLE I
RMSE COMPARISON RESULTS

Maneuvers Attitude (◦) AGSTF EKF ESKF

pitch 2.132◦ 2.757◦ 2.809◦

Two-point roll 3.357◦ 4.711◦ 4.824◦

yaw 4.567◦ 4.848◦ 4.560◦

pitch 2.131◦ 2.862◦ 2.257◦

Two-triangle roll 3.273◦ 3.984◦ 4.446◦

yaw 8.416◦ 8.180◦ 8.247◦

pitch 3.461◦ 3.033◦ 29.586◦

Fixed-point roll 11.749◦ 11.340◦ 35.001◦

yaw 15.250◦ 17.186◦ 19.551◦

◦ represents the degree of Euler angles.
AGSTF denotes the proposed filter.

The comparison result is shown in Fig. 8, where both
EKF and ESKF consume nearly 100 times more time than
the proposed filter. Also, the overall runtime of the proposed
filter reaches higher stability than others. Fig. 7 shows the
actual experiment of three designed aggressive maneuvers,
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(a) (a) (a) (a)

(b) (b) (b) (b)

(c) (c) (c) (c)

Quadrotor-

maneuver paths

Fig. 7. Actual experiment flight of the proposed quadrotor platform. (a) Two-point loop flight (front view). (b) Two-triangle loop flight (bird view). (c)
Fixed-point rotation flight (bird view).

Fig. 8. Algorithm runtime results of 500 epochs for the proposed filter,
EKF and ESKF.

including several scenes and complete flight paths.

V. CONCLUSION

In this paper, we propose an adaptive Complementary
Filter for aggressive maneuvers of a quadrotor. With adap-
tivity to the extent of maneuvers, the proposed CF fuse
acceleration, magnetic field and angular velocity from a
MARG sensor system. To validate the performance, we
establish a light-weight quadrotor and a flight field with
VICON system. In flight experiments, the quadrotor utilizes
the estimated attitude from the proposed CF, and conducts
simultaneous comparison with EKF and ESKF. Results show
that, the CF outperforms in both accuracy and efficiency of
the fast attitude estimate, during the quadrotor’s aggressive
maneuvers.
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